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1. Introduction

To test new aeroengine designs model-scale tests are often performed as they provide realistic aerodynamic conditions
while at the same time being easy to modify and instrument with sensors. A disadvantage of model-scale tests is that
direct measurement of radiated noise is often impractical. Compared to full-scale tests these model-scale tests require a
suitable facility, and one which is large enough to both contain the model to be tested and allow measurements to be made
in the acoustic far-field. Model-scale tests are often carried out in indoor facilities, where either anechoic facilities do not
exist for the measurement of radiated noise or measurement is impossible due to mechanical constraints (venting of gasses
for example). Because of this, acoustic measurements are often restricted to locations within the bypass duct or inlet duct.

Such model-scale tests therefore require a measurement technique which can estimate the far-field directivity using
measurements of acoustic pressure made at the inside wall of the duct. Ideally the technique would allow rapid estimation
so that it can be used as part of an iterative design process. This paper presents a technique that fulfils these criteria.
The technique is restricted to broadband, multi-mode sound fields whose directivity patterns are axi-symmetric, and
whose modes are mutually uncorrelated.
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Several previous authors have employed in-duct measurement techniques using arrays of microphones to better
understand the sources of sound within the duct. In a previous paper [14] the current authors proposed an in-duct
beamforming technique to quantify the sources of broadband noise on a rotating, ducted fan using a beamformer whose
point of focus followed the rotation of the fan. Sijtsma [5] and Dougherty et al. [11] later implemented experimentally
source imaging techniques for noise source quantification and demonstrated the feasibility of the approach. In all cases,
however, the focus was on imaging the noise sources and no attempt was made to link these noise sources to the radiated
sound from the duct to the far-field.

The only current technique for estimating the radiated directivity patterns from in-duct measurements is to first
determine the amplitudes of all the propagating modes in the duct, a process known as modal decomposition. The
amplitudes of each mode can then be used as the input to a radiation model which describes how each mode propagates to
the far-field. Modal decomposition for tonal (rotor-stator interaction) noise is a well-established experimental technique,
first applied by Bolleter and Crocker [1] and later extended to ever larger microphone arrays.

Modal analysis of broadband noise is a comparatively less well developed technique. Broadband noise generated by the
fan causes all propagating modes to carry energy. As the frequency under consideration increases, the number of modes
able to propagate also increases and more microphones are required to accurately decompose the sound field. This involves
either using an array with a large number of fixed microphones, as employed by Ganz [2] for example, or by using a smaller
number of microphones that can rotate around the duct axis. To use a rotating microphone array, a known phase reference
is required, such as that provided by a single stationary microphone. For example, researchers at Boeing [15] have applied
modal decomposition to study both fan noise source generation mechanisms, but make no attempt to link the in-duct
modal analysis results to the far-field. Enghardt et al. [3,4] have recently proposed techniques to allow the decomposition
of broadband sound fields with up to 150 propagating modes.

Predicting the far-field directivity from in-duct measurements using a modal decomposition approach is a very involved
process and unsuitable for rapid assessment of directivity patterns due to the complexity of instrumentation and
modelling of the radiation patterns of each individual mode. The technique proposed in this paper is designed with rapid
predictions in mind, and can be implemented with considerably less complicated microphone arrays than those used in
modal decomposition approaches.

In Section 2 the theory of the technique is developed. We start with a definition of a transfer function which describes a
one-to-one correspondence between an in-duct mode-ray angle and a corresponding angle in the far-field. The in-duct
mode-ray angles are obtained using an axial array of microphones, and, to aid theoretical analysis a simple delay-and-sum
beamformer, described in Section 2.3. A transfer function suitable for hollow cylindrical ducts is derived in Section 2.4
using an analytical expression for the radiation pattern. In Section 3 some properties of the transfer function are
investigated including a high-frequency asymptotic formulation. The transfer function is extended to a more realistic with-
flow case in Section 4. In Section 5 we return to the no-flow formulation and validate its ability to predict the far-field
radiation pattern from in-duct measurements using experimental data.

2. Theory

The technique presented here is based on the principle that the angle of the main radiation lobe associated with a
particular mode is uniquely and simply related to the in-duct axial propagation angle [6]. In the no-flow case the two
angles are identical. The variation of in-duct mean square pressure with axial propagation angle, ¢, is estimated by an axial
beamformer comprising a number of uniformly spaced microphones located at the duct wall. The far-field radiation,
\pf(¢f,w)|2, at a far-field radiation angle ¢, is then related to the beamformer output, |b(¢h,,)|?, at an in-duct angle ¢, via
a transfer function, |H(¢>f,(u)|2,

(. )% = [H(s, @) * |b(py, ) * (1)

where \H((/)f.a))|2 is predicted from numerical calculation. It is fundamentally important to recognise that ¢, and ¢; differ
in the general case but are uniquely and closely related. In the hypothetical case of radiation problems where the axial
Mach number in the duct and in the far-field are the same (see Section 2.4), ¢ = ¢, [6]. In the exhaust duct case presented
in Section 4, however, ¢; is related to ¢, by a simple transformation given by the laws of refraction.

Crucially, the measurement principle is only useful if the transfer function, |H(¢f,w)|2, does not depend on the mode
amplitude distribution (or equivalently the sound source distribution) in the duct since this information is very rarely
known a priori. This requirement will be investigated later in the paper.

2.1. In-duct sound field in terms of mode-ray angles
At a single frequency, w, the sound field in a semi-infinite, hard-walled, hollow cylindrical duct with uniform mean-

flow is of the form

pX,m) = ZA’"" P, eitkamz+ o0 @)

mn
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Fig. 1. A schematic of the measurement setup. An axial array of microphones mounted at the duct wall are used to steer a beam at an angle ¢,,. Individual
modes are incident on the array with mode-ray angles ¢,,,. The polar radiation angle is denoted ¢;.

where x = (1,0,2) is a location in the duct coordinate system. Fig. 1 is a schematic of the duct, where z is positive along the
duct axis towards the duct exit. ¥, is the normalised mode of order (m, n), of pressure amplitude A, and Kz, is
the modal axial wavenumber. In the following, it is convenient to use the notation given by Chapman [7]. Eq. (2) can be
re-written as

PX,m) = ZAmn lpmnei(MJrcosE,,,,,)k?Jriwt (3)
mn

where M is the axial flow Mach number, and k= w/c.

Here the pressure is expressed in Prandtl-Glauert transformed coordinates, with a bar denoting division by the Doppler
factor = \/(1—M2), and unless otherwise stated a double bar denoting division by .

In this notation ¢,,, is the transformed mode ray angle of the mode (m, n) lying in the range 0 < ¢ < 7t/2, defined by

.7 Omn

sing ., = T 4)

where oy is the eigenvalue of the (m, n)th mode. The axial wavenumber is given by
Kzmn = (M + €S )k / B (5)
Note that ¢,,, is related to the actual mode-ray angle ¢,,,, that is the angle at which the mode propagates relative to the

duct axis, by
) Sing

sin =——— " 6
o= ircos 7 (6)

2.2. Far-field radiation for flow everywhere the same

The transfer function |H(q‘)f,w)|2, defined in Eq. (1), will initially be predicted using the far-field modal directivity
pattern for a flanged, semi-infinite duct. The expression, expressed here in Chapman'’s [7] notation, for far-field radiation in
which the flow speed is the same everywhere is
(_i)m+ 1 k

28°R
where Amn =[1-m?/62,]”! is the mode normalisation constant and E:(?2+F)1/2 (see Fig. 1) is the distance from the
centre of the open duct face to the far-field measurement location. In Eq. (7),

pf@f.w) _ ZAmn/lmnHZCOS$mn @—im0+iMKZ +ikR ei(u[d($f'$mn) (7)
mn

72(sin$f)j;n(kﬁsin$f)e*”‘i(msaf*cosgnm)
ka(1—m2/62,)Jm(Gmn)(sin® ¢ —sin>P )

are the non-dimensional modal directivity functions given by Chapman [7] such that d(¢,¢ ,,) =1 for ¢ = ¢,,,. Rice [6]
shows that the angle ¢,,, at which peak radiation occurs corresponds to the group velocity angle, i.e., the angle at which
energy is transmitted along the duct.

In Section 4 we use a more realistic unflanged duct model for the far-field radiation to predict |H(¢f,w)\2 that takes into
account, for example, shear layers in the flow due to a by-pass duct.

d( PP mn) = (8)

2.3. Beamformer formulation

The axial beamformer, required by the measurement technique, comprises N equally spaced microphones arranged
along the duct wall, r;=g, at a fixed circumferential position, such that z, = lAz/ﬁ2 (I=0,1,...,N—1), where Az is the spacing
between adjacent microphones at the duct wall. The beamformer response is formulated by multiplying the complex
pressures at each microphone by a complex weighting coefficient, w;, and summing such that the signals at each
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microphone due to a single mode propagating at the beam-steer angle, ¢, add in phase

_ 1N _
b(pp) = > P@LIW] () (9)
i=o
where
Wi(py) = eI+ costue (10)
Substituting Eq. (3) for the pressure into (9) gives
b(h @) => Amn Ui T(P s Pp) (11)
mn

where the time dependence has been dropped and T(¢,,,,¢,) is the beamformer response function,
- =1 - =
T ) = 5y 3 €O mcostwle (12)
i=o

Note that because the phase delay in Eq. (10) is chosen to correspond to the modal phase velocity (see Chapman [7])
the dependence on Mach number in the beamformer response cancels and the maximum output of the beam-
former due to a particular mode occurs when the group velocity angle equals the beamformer angle, that is
T(¢p un,¢p) =1 for ¢, = ¢, Thus, there is exact correspondence between the beamformer angle ¢, and the radiation
angle.

For broadband noise, the modes may be assumed to be uncorrelated and the mod-square beamformer output can be
written as

(@b =" IPw(P s D) IT(P s D)1 (13)

where [pu(¢ ;. @)|? is the squared pressure at the duct wall due to the (m, n)th mode, given by, for the case of a hollow
cylindrical duct,

2
_ 1Amnl

Pw(P . @)* = /. (14)
mn
The squared pressure at the duct wall is the incoherent sum of the modal components
Pw(@) = IPw(p s )1 (15)
mn

2.4. In-duct to far-field transfer function for flow everywhere the same

Combining Egs. (1), (7), (13) and (14) the in-duct to far-field transfer function for a flanged duct radiation problem in
which the flow speed is everywhere the same is

—\ 2 — S _
R - ka)* mnA mn 2A?nnd »Pmn > 2 mn

4<a> H@p o = SO A (@ )l m|2 By, wfcos ¢

ZmnlA(d)mn)Iz(]*O-T) |T(¢mn-¢b)|2

mn

(16)

and the steer-angle of the beamformer matches the radiation angle, ¢, = ¢.

An essential condition for the measurement technique to be valid is that the transfer function, |H($f,w)|2, must be
independent of mode amplitude distribution. In Sections 3.3 and 4 we demonstrate that this condition is valid to within 1
or 2dB over a range of extreme mode amplitude distributions for both no-flow ducts, and a typical exhaust duct
configuration.

2.5. Mode amplitude distribution models

The simulations presented later in the paper are based on idealised mode amplitude distribution models. Joseph et al.
[8] present various models for |A(¢,,,)|*. The practical validity of these models for aeroengine applications has also been
studied by Castres et al. [19]. The first model used here assumes equal amplitude per mode, that is,

VAP )2 = A2 (17)

where A is the modulus of the modal pressure, assumed constant for all cut-on modes.
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The second model assumes equal energy per mode namely that all cut-on modes carry equal sound power
~ 2pc 1 (1-Mcose,,)*
A% " (COS py) B2

where w is the sound power carried by a single mode above cut-off.
Another family of mode distribution models is obtained by assuming that the source plane can be modelled as a
distribution of incoherent point-sources of arbitrary temporal and spatial order, v and u respectively,

— 2u —_ 2y
- a2 1 M—cos¢ 1-Mcos¢
O el i (19)

where special cases are a distribution of volume velocity (monopole) sources, in which case, (¢,v) = (0,2), and a distribution
of dipole sources (i,v) =(1,0).

VA )€ 12 (18)

3. No-flow results

In this section we will present simulation results to illustrate the use of the technique for determining the radiation
directivity from a hollow cylindrical duct with no-flow, that is, quiescent conditions. Although this situation is
unrepresentative of aeroengine situations the comparative simplicity of the problem more easily allows physical
interpretation, and as presented elsewhere [10,16], experimental validation of the results. In all cases in this section M=0
and hence we drop the overbar on ¢, and ¢, to make this explicit.

3.1. Beamformer response due to the presence of a single mode

Fig. 2 shows the beamformer output as a function of steering angle due to a single mode of unit amplitude at the duct
wall, [pw(¢n@)1? =1, for the (0, 0), (10, 0) and (17, 0) modes for M=0 at ka=20. The array has 11 microphones separated
by a distance Az=//2 to give a total array length of 54. The maximum output of the beamformer in each case can be seen
to correspond to the mode ray angles, which are ¢, =0°, ¢, =36" and ¢,,, =73 respectively. Note also that the
beamwidth increases as the beam is steered towards ¢, =0 (end-fire).

We now investigate the beamformer output for a multi-mode sound field for the idealised mode amplitude distribution
models given in Section 2.5.

3.2. Beamformer response to multi-mode sound field

A expression for the variation of beamwidth with steering angle can be derived by noting that the beamformer
directivity function of Eq. (12), for a fixed microphone spacing Az, can be written as

sin {gkAz(cosq&mn —cosqﬁb)}

T ,q = - 20
TG o) Nsin [ kAz(cos¢,,,,—cos¢,)] (20)
0 T T T T T T T 3
) =0°
10 (0,0) |
-20 |
-30 |
m 0 e
[ =36
;cv 10 b (10,0
5 -20 f
& -30 \
= 0 F t +
b0y = T13°
10 | (17,0)
-20
_30 -/—\

0 10 20 30 40 50 60 70 8 90
¢y [degrees]

Fig. 2. Beamformer output as a function of steering angle calculated for excitation by the (0, 0) (top), (10, 0) (middle) and (17, 0) (bottom) mode at ka=20.
As the mode order increases the modes become progressively less well cut-on and the mode-ray angle increases (Eq. (4)).
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We define the array beamwidth, ¢py, as one-half of the angle separation between the first zero crossings,
IT(pmny £ Po)l =0, either side of the mainlobe peak ¢,,,. The zero crossings occur when the numerator of Eq. (20) is zero.

For simplicity we assume the beampattern is symmetrical about its peak. The beamwidth for a beam steered at ¢, = ¢,,,, is
given by

1 2
o = 3 2o bl =05~ | 0S|~ 1)

Eq. (21) shows that the beamwidth decreases as the length of the array L, = (N-1)Az increases, and increases for ¢,,,
close to zero. However as ¢, tends to 0 the mainlobe of the beam approaches the end-fire angles, progressively more of the
mainlobe is “lost” to angles outside of the duct. The area under the mainlobe decreases, and in the multi-mode case, this
will cause a reduction in the beamformer output. To compensate for this, for angles from ¢, =0 to ¢, = ¢y the following
correction is applied:

b(é) — b(dp)+b(dpw—p) for ¢y, < Py
()= b(¢p) for ¢, > dpw

this can be interpreted as adding to the beamformer output in the correction region that which would be measured
“outside” of the duct.

Fig. 3 is a plot of the corrected beamform output as a function of steering angle for the three mode models presented in
Section 2.5. The array parameters are N=11, Az= /2, the frequency is ka=20. To allow the comparison between the
different mode models the beamformer output is normalised by fg/z |b(¢p,@)|*sing, de,. Note that in Fig. 3 the response
due to an equal energy per mode sound field is very nearly independent of beam-steer angle for angles below

approximately 70°.

(22)

3.3. Transfer function |H(¢f,w)\2 for the no-flow cylindrical duct

Fig. 4 is a plot of |H(¢f,w)|2, calculated from Eq. (16), as a function of steering angle calculated for three different mode
amplitude distributions (equal amplitude, equal energy and volume velocity) at ka=20. The in-duct array has a length
=54 with Az=1/2, and no flow is assumed. For normalisation purposes, |H(<;5f,a))|2 is multiplied by (8/N)(R/a)? as
explained in Section 3.4.

Fig. 4 shows that for angles below approximately 70° the transfer function \H(¢>f,w)|2 is largely independent, to within
2 dB, of the chosen mode amplitude distributions, even though these distributions differ significantly. The bold dash-dot
curve in Fig. 4 is a high-ka approximation to Eq. (16) which shall be derived in the next section.

The largest deviation from the high-ka approximation is observed for the equal amplitude source model at higher ¢.
This is due to the behaviour of |An,|? for near cut-off modes approaching infinity as ¢, — /2 in Eq. (19). This causes the
beamformer response to be dominated by individual modes close to cut-on.

3.4. A high-ka approximation for the in-duct to far-field transfer function |H(d)f,co)|2 for no flow

The in-duct to far-field transfer function in Eq. (16) can be predicted from knowledge of the array length, number of
microphones and their axial spacing, together with an appropriate radiation model. However, in this section we derive a
simple analytic expression for |H(<;5f,w)|2 that is valid in the high-ka limit and for no flow.

In the previous section we demonstrated that while the beamformer output depends on the mode amplitude
distribution the transfer function |H(¢f,a))|2 is insensitive to it. In order to derive a closed form approximation for

8
p
1
—~ 6 f ]
M
=
=
e
<
B
3|5
=
N
o
2
=7

0 10 20 30 40 50 60 70 80 90
¢p [degrees]

Fig. 3. Beamformer output as a function of steering angle for ka=20 and M=0, by an equal energy per mode sound field (solid), an equal modal amplitude
sound field (dotted) and a distribution of volume velocity sources (dashed).
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. . . . . . . v
0O 10 20 30 40 50 60 70 80 90
¢ [degrees]

-10

Fig. 4. A plot of the transfer function \H(d),,w)\z as a function of steering angle, calculated for three different mode amplitude distributions at ka=20 and
M=0.

|H(</)f,w)\2 that is valid in the limit of high frequency, we can therefore chose a particular mode amplitude distribution. If
we assume the sound field in the duct has equal energy per mode and that the flow speed can be neglected, there exists a
simple expression for the high-ka far-field radiation pattern. This result can then be used to derive a high-ka
approximation for the beamformer output in an equal energy per mode sound field by showing first that this sound field is
equivalent to a semi-isotropic noise field, for which a simple expression for |b(¢,,®)[? exists. Combining the two results
gives a high-ka approximation to \H(¢>f,a))|2.

Following Joseph and Morfey [17] the far-field radiation from an unflanged duct containing an equal energy per mode
sound field in the limit as ka— oo is

2pcW
i) = =2

gz Cosdy (ka—oo) (23)

where R is the observer distance from the centre of the duct face and W is the total radiated sound power.

We now consider the in-duct beamformer output for an equal-energy-per-mode sound field. We will make use of a
concept widely used in SONAR theory. The array gain of a phased array quantifies its level of noise rejection. It is defined as
the ratio of the noise power of an omnidirectional sensor to the noise power output detected by the beamformer at a
particular beam-steer angle. Applied to the present problem it may be defined as

[Pw(@)? 3 P (P )
AG = = 24
@0 = by~ S P T ) 4

Noting that the mean-square pressure at the wall of the duct is approximately twice that averaged over the duct cross-
section [8], and replacing the summation over (m, n) by an integral over ¢,, a high frequency approximation for the
squared pressure at the duct wall is of the form

~T/2
S Pl 2N k) [ APy dey (25)

as (ka— oo0), where N (ka) is the total number of propagating modes at a frequency ka and n(¢,) is the modal density
function, which specifies the number of modes, N(¢,) per unit in-duct propagation angle d¢,,

1 N(¢p)—N(dp—9dyp)
) = Nrika) 56,

It may be shown using the modal density function due to Rice [20] expressed in terms of the cut-off ratio, for M=0, that
n(¢y,) = 2cos¢y,sing,,. Noting that at high ka, A'(ka) ~ ( ka)? [20], inserting Eq. (18) into (25) leads to a simple expression for
the squared pressure at the duct wall of the form

(26)

S IPu( )2 > 2k 7 (ka—oo) (27)

where S is the duct cross-sectional area 7a?.

In Appendix A we demonstrate that an equal energy per mode sound field, in the high-ka limit, tends to a semi-isotropic
sound field, in which the mean square pressure arriving per unit solid angle over a hemisphere is constant. The array gain
for a line array of N sensors separated by a distance Az, and steered at an angle ¢, in a semi-isotropic noise field is given by
[21]

N2

28
2N+4 3N (N=Dcos(2rlAzcos¢, /A)sinc(21Az/ 1) (28)

AG(¢p) =
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Here we have assumed that the array gain for a line array in a semi-isotropic noise field is half that in a fully isotropic
noise field, since the noise due to a single sensor in the former case is half that in the latter, while the beamformed noise is
largely the same in both cases. Substituting Eq. (27) into Eq. (24) gives

»  2(kay? pcw
|b(dp, )| = AGWy) S (ka— oo) (29)

Finally, combining Eqs. (29) and (23) and noting that for the case of equal energy per mode W /w =N (ka)— (% ka)? as

ka— oo,

2R\ ? [H(¢p,0)?
(7> TAG(,) —cos¢y  (ka—o0) (30)
Note that for Az=1/2 in Eq. (28) the array gain AG(¢) = IN. In this case Eq. (29) simplifies to
2
bppen? = 2EXLZ (2 kaosoo) (31)
and therefore,
8 /R\? )
N (5) HGpoR ~costy ka—oo) (32)

where the reader is reminded that ¢, = ¢, in this special case of no flow.
Eq. (32) is plotted in Fig. 4, for N=11 and ka=20, and is seen to be in very close agreement with the exact calculation of

IH(¢y,)|* from Eq. (16).
3.5. Comparison of in-duct and theoretical array gain

Fig. 5 is a comparison of the theoretical array gain for a line array in a semi-isotropic noise field as predicted by Eq. (28)
with the expression for a linear array at the duct wall versus frequency for equal energy per mode as predicted by Eq. (24)
for an array of 11 sensors. The frequency axis is normalised to the reference frequency kap=20 at which Az=//2. In
general, reasonable agreement between the ideal (dashed) curve and the in-duct array gain (solid curve) is observed. As
frequency increases the array gain tends to a value of 101log;o(N/2), except at ¢, = 0 where the exact array gain is around
1dB less than the ideal array gain, attributable to the end-fire effect described in Section 3.2. For a beam-steer angle of
¢, =90° (broadside), the agreement with the ideal array gain is less close. The exact array gain fluctuates significantly. This
can be attributed to the fact that only a few modes have mode-ray angles close to 90° and hence the semi-isotropic
assumption is less valid for high angles close to broadside. At 45°, where the mode density is the highest, and the sound
field is at its “most isotropic”, the agreement is closest.

3.6. Estimation of mode amplitude distribution from beamformer output

In this section we investigate the use of the in-duct beamformer for estimating the distribution of mode amplitude with
propagation angle ¢. In Eq. (13) the beamformer output is formulated as a convolution of the pressure measured at the
duct wall, [pyw(¢,-@)1?, with the beamformer response function. At high-ka the squared pressure at the duct wall is
approximately twice that averaged over the duct cross section. Assuming that the variation of |A(¢,,,)> over the

o //"A -

%\:Pdﬁ /// /\/W\f\

= [ =45°

g ! 1010g,0(L/2) Ay‘\/\/\/ Lt
EE=w TN \‘Wﬂ' 1

NAEE
10! " -
ka/kag

Fig. 5. A comparison of array gain for a line array in a semi-isotropic noise field as predicted by Eq. (28) with that of a linear array at the duct wall as
predicted by Eq. (24). Calculated for an array of 11 sensors as a function of frequency, where kap=20 is the frequency at which Az=1/2. From top to
bottom the beam-steer angle is ¢, = 0" (endfire), ¢, =45" and ¢, =90 (broadside).
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beamwidth is small, and that the beamformer response is negligible at angles away from the beamwidth, the variation of
|A(¢,p)1? can be removed from the integral in Eq. (25), and the integral can be confined to the beamwidth of the array,

by +A

op
Ib(y )2 ~ 2N (ka)lA(y)I2 /¢ n(¢y) deby (33)

b~ b

where the integral over ¢, specifies the number of modes in the beamwidth 2A¢,, divided by the total number of modes.
Noting that for a cylindrical duct, n(¢,)=sin2¢, [20], and performing the integration, the squared mode amplitude
averaged over a beamwidth may be estimated as

Ib(¢pp,)I*
N (ka)[2sin2¢,sin2A¢,]

Angles ¢,—Ad¢, less than zero correspond to the situation where part of the mainlobe is outside of the duct, and ¢, is
taken to be zero. The variation of mode amplitude with ¢, calculated by the approximation in Eq. (34) is plotted in Fig. 6a
for an equal-energy-per-mode sound field with unit power per mode at ka=20. Also shown is the exact distribution
(crosses). The beamformer has 21 equally spaced sensors Az= 1/2 apart. In Fig. 6b the exact mode amplitude distribution
is generated by multiplying the equal-energy-per-mode distribution from plot (a) by 10“™* where o= 0.15 and = 10.
Fig. 6¢ is the corresponding result when |A(¢,,)| varies on a scale roughly equal to a beamwidth, thatis « =0.15 and = 30.
The beamwidth in the simulations varies from approximately 20° at ¢, =0 to approximately 6° at ¢, =90.

In Fig. 6 the error between the actual and estimated mode amplitude distribution is smallest in the range of propagation
angles between 20° and 70°. At low beam-steer angles the difference between the actual and estimated mode amplitudes is
larger although the error is still less than 3 dB at 0°. This error can be attributed to the “end-fire” effect mentioned above,
where the mainlobe of the beam lays partly outside the duct. With the mode amplitude distribution that varies on a scale
larger than a beamwidth, Fig. 6b, the measurement obtained using the in-duct beamformer captures the main variation of
the distribution especially in the angle range 20-70°. When the variation of mode amplitude is on a scale equal to or
smaller than the beamwidth, the beamformer is not able to follow all of the details of the variation, especially at beam-
steer angles close to endfire. However, an “average” modal distribution is captured, and increasing the length of the array
(thereby reducing the beamwidth) would improve resolution of the mode amplitude variation. The estimation may also be
improved by employing more sophisticated beamforming approaches, such as the deconvolution method proposed by
Brooks [9]. Another interesting avenue for future research is whether the estimated distribution of mode amplitudes as a
function of mode-ray angle could be used directly as the input to a radiation model.

IA(y)I* ~ (34)

3.7. Sound power estimation using the in-duct beamformer

In this section we investigate the use of the beamformer measurement for the determination of radiated sound power.
The radiated sound power, for axi-symmetric radiation, can be inferred from measurements of the far-field intensity by
integrating over a surface enclosing the duct exit, written as

2nR?

W(w) = o

n/2
/0 1Py by ) Psingsy depy (35)

+ (@) —— Beamwidth X

0 10 20 30 40 50 60 70 80 90
9y [deg]

Fig. 6. A comparison of the true mode amplitudes (crosses) and the approximation calculated from the beamformer response function using Eq. (34) at
ka=20 with an array of 21 sensors spaced Az=2/2. Plot (a) is for an equal energy per mode sound field, plot (b) has |A(¢,,,)|> varying on a scale larger
than a beamwidth and plot (c) has |A(¢,,,)|> varying on a scale approximately equal to a beamwidth.
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The far-field radiated pressure, |pf(¢>f,w)|2, can be estimated from the transfer function, |H(¢f,w)\2, derived earlier.
Substituting Eq. (1) and the approximation to |H(<j>f,w)|2 from Eq. (32) into Eq. (35) gives an expression for the radiated
sound power in terms of the in-duct beamformer measurements in the high-ka limit,

SN (™2 4
W)= g [ Ibpaisin2g, di, (36)

In Eq. (36) we assume that there are no reflections from the open end of the duct, and that the energy propagating in the
mode-ray angles from O to 7/2 is radiated to the far-field. In the case where reflections can be considered important Eq.
(36) can be modified by subtracting the reflected sound power from the power flowing towards the open end,

SN /2 . T .
W(O)) = Wincident_Wreflected = 8_pC </O |b(§bbvw)|251n2(l’b d(/)b_ //2 |b(¢bvw)|251n2¢b d¢b) (37)
m

Fig. 7 is a plot of the beamformer output between 0° and 180° for an equal energy per mode sound field using an array
of N sensors separated axially by 2/2, with N chosen such that the array length L, varies from 2/ to 504. The frequency is
ka=20 and reflections from the open end are assumed to be completely absent. The beamformer output in the range of
beam-steer angles from 90° to 180° is due to the presence of side-lobes pointing upstream. The output in this range of
angles is approximately 10 dB lower than the maximum output for the shortest array, increasing to 25 dB for the longest
array. Thus, the performance of the array in rejecting noise propagating from the opposite direction from the direction of
the main sources (caused by, for example, reflection or from the presence of other sources such as valves) appears, at least
in this example, to improve as ~ log;,N. This implies that Eq. (37) can be used to separate incident and reflected sound
power if the difference between them is less than these rejection values. Increased rejection is achieved using longer
arrays. It may be possible to improve on the rejection by choosing beamformer weights (known as “shading”) that increase
side-lobe rejection, at the expense of increased main-lobe width. This is beyond the scope of the current work, but in-depth
coverage is available, for example, by Burdic [21].

An interesting analytical result can be derived in the case where the microphone separation distance is Az=//2, and
the noise field is perfectly isotropic. At this separation distance the pressure at the wall at each of the individual sensors is
uncorrelated (see for example Burdic [21]) and the beamformer output is simply,

By = g5 [Pw()PN] (38)

and is therefore independent of beamformer angle.

Substituting Eq. (38) into Eq. (36) gives a simple relationship between the radiated sound power and the squared
pressure at the wall for the idealised case of equal energy per mode,

SIpw()|?

Wiw)= 4pc

(39)

This result is identical to that obtained by Joseph et al. [8] for the determination of radiated sound power from
measurements of pressure at the duct wall for an equal energy per mode sound field.

Having established some basic physical principles using a simplified no-flow model we now consider application of the
technique to a simulated exhaust duct, where there are two flow streams.

[b(¢,w)|? [dB]

NS

16Wpc

0O 20 40 60 80 100 120 140 160 180
¢ [degrees]

Fig. 7. Beamformer output as a function of beam-steer angle ¢, for an equal energy per mode sound field using arrays of varying length L, with sensors
separated axially by 1/2 at ka=20.
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4. Estimation of sound-radiation from aeroengine exhausts

In this section we consider the use of the in-duct beamformer technique to predict the sound radiation from an
aeroengine exhaust. The exhaust is modelled as a hard-walled annular duct with a hub-to-tip ratio (the ratio of the inner
radius, Ry, to the outer radius, Ry) of 0.8. The calculation of the in-duct beamformer output proceeds as before for the
cylindrical duct with the substitution of annular mode shape functions ¥ in Eq. (2).

Fig. 8 is a schematic of the duct geometry used to simulate the exhaust radiation problem. There are two flow streams,
one is the flow from the jet with a Mach number M,, the other is the surrounding mean-flow flight stream which has a
Mach number of M;.

For the purpose of this simulation we predict the far-field radiation pattern for different source models using Gabard
and Astley’s [22] solution for the radiation from an unflanged annular duct with an infinite centre body. This model, an
extension of Munt’s solution [23], provides an exact solution for the sound field radiated by a single duct mode from an un-
flanged annular duct with a hard centre-body. Diffraction through the semi-infinite vortex sheet which separates the
annular jet stream from the ambient external flow is included. The model has been successfully validated against no-flow
experimental and numerical data by Sugimoto and Astley [24].

An additional complication is introduced by the presence of two flow streams. As a ray leaves the duct it travels through
the shear layer separating the two flow streams and is refracted. The relationship between the in-duct angle ¢, and the far-
field angle ¢ can be estimated using Snell’s law

1 cos¢,,
P =08 T M, — My cos g, (40)

When M, > Mj, as is inevitably the case with aeroengine exhausts, the range of far-field angles is smaller than the range
of in-duct angles. In Eq. (40), we define the “critical angle” ¢, as the value of ¢; when ¢, = 0. The range of far-field angles
below the critical angle is known as the “cone of silence”. Sound is only able to enter the cone of silence by diffraction of
the rays [25]. Eq. (40) gives a one-to-one relationship between in-duct and far-field angles, which we use to relate
beamformer angle to radiation angle in Eq. (1). This means that the transfer function approach can only be used to predict
radiation outside of the cone of silence.

Figs. 9a, b, and c are plots of the beamformer output, far-field directivity and transfer function respectively for an
annular duct at ka=20. An array of 11 microphones spaced Az = 4/2 apart was used for the in-duct beamformer. The figure
shows curves for equal amplitude, equal energy and volume velocity mode amplitude distributions. The flow-speeds used
for the calculation are M;=0.4 and M,=0.6.

Fig. 9a is a plot of beamformer output as a function of transformed in-duct angle ¢, for each of the mode models.
The beamformer output is largely independent of the chosen mode amplitude distribution below 50°. At higher angles the
curves begin to diverge as the prediction becomes sensitive to the fewer propagating modes with high mode-ray angles as
in Fig. 3 for the no-flow case.

Fig. 9b is a plot of the far-field radiation pattern predicted using the Gabard-Astley radiation model for each of the
mode amplitude distributions as a function of the transformed angle $f. The radiation pattern is largely independent of the
chosen mode amplitude model. Note also that the Gabard-Astley model predicts radiation inside the cone of silence, at
angles below the critical angle 33.5° which cannot be deduced from the in-duct beamformer.

Fig. 9c plots |pf(¢f,w)\2/\b(¢>b,w)|2, corresponding to the transfer function obtained by dividing the radiation at an angle
¢¢ by the beamformer output at an angle ¢, where the two angles are related by Eq. (40). The transfer function is
undefined for angles below the critical angle since Eq. (40) is undefined for ¢; < ¢. and there is no longer a one-to-one
correspondence between in-duct and far-field angles. At angles greater than the critical angle the transfer function is
relatively insensitive to the chosen mode amplitude distribution varying by ~ + 5dB for angles up to 65°. At higher angles
the sensitivity of the beamformer output to changes in the mode amplitude distribution causes the transfer function to
become dependent on the mode model. This limitation cannot be avoided without a priori knowledge of the noise sources.

Ambient Flow (M1) [

Outer wall Ro Vortex Sheet [

Flow Jet (M2) —=

Centre body

Fig. 8. A schematic of the annular duct geometry used in the simulations of noise radiated from an aeroengine exhaust.
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Fig. 9. Beamformer output (a), far-field radiation (b), both plotted in dB with reference to arbitrary pressure, and transfer function (c) for the exhaust
configuration. Three different mode-models are shown, the frequency of calculation is ka=20.

It should be noted, however, that the mode distribution functions used in this study vary considerably close to cut-off, and
as such the differences in predictions at high-angles can be seen as a “worst-case” performance.

Application of this technique in practice will also involve dealing with the challenging issues of using wall-flush
mounted microphones in a duct with flow. Principal among these are the contamination of the microphone signals by flow
noise and the presence of non-uniform radial flow profiles causing refraction of the mode rays close to the duct wall.

The use of a beamformer is beneficial to the suppression of boundary layer flow noise since delay and sum and delay
beamforming essentially enhances the coherent part of the signal, i.e., the acoustic noise, and partially rejects the
incoherent, non-acoustic part of the signal. The level of noise rejection is quantified by the array gain. In this way the signal
to noise ratio is improved in a manner similar to the ’'three-microphone’ technique often employed for in-duct
measurements [18,12].

Refraction of sound by the boundary layer along the wall in which the microphones are situated may be included in the
computation of the transfer function between the beamformer and far field pressure, as given by Eq. (1), for example, ray-
tracing techniques or from the modal solution obtained by solving the Pridmore-Brown equation for sheared flows. The
significance of these effects on wall-mounted pressure measurements in general remains to be determined. However, there
is copious evidence to suggest that in other in-duct measurement approaches, such as modal analysis, results in which the
flow is assumed to be uniform, that is with no boundary layer included, are still useful and compare well with theoretical
predictions. Tapken et al. [12,13] discuss these issues in more detail.

5. Experimental validation of the no-flow technique

This section presents an experimental verification of the in-duct to far-field measurement technique developed in
Section 2. The main aim of the experiment was to verify the estimation of far-field directivity using an in-duct axial
microphone array.

5.1. Method

Fig. 10 is a schematic of the experimental set-up. The experiment was performed in the large anechoic chamber and
adjoining reverberation chamber at the ISVR. A 4.8 m hard-walled, steel duct of internal diameter 0.4 m was passed
through the wall separating the anechoic and reverberation chambers. A thick panel was constructed to hold the duct and
ensure good acoustic isolation of the two chambers.
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Reverberation Chamber y
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Fig. 10. A plan-view schematic of the experimental set-up. The reverberation chamber is connected to the anechoic chamber by a 4.8 m steel duct. Noise
is generated either by two loudspeakers in the reverberation chamber. In the anechoic chamber, the 19 far-field microphone positions trace a circular arc
of radius 3.45 m, spaced 5° apart, from 0° (on axis) to 90°.

Fig. 11. A photograph of the in-duct microphone array. Fifteen 7 mm electret microphones were mounted on a thin 50 mm by 400 mm aluminium plate.
The microphones were positioned at the edge of the plate, with the centre of the capsules 25 mm apart.

A broadband noise field was created in the duct using a pair of loudspeakers located in the reverberation room, Both the
in-duct acoustic pressure and the far-field acoustic pressure were measured simultaneously. The in-duct acoustic pressure
was measured using an axial array of 15 microphones mounted at the duct wall. The far-field pressure was measured using
a far-field microphone array.

5.1.1. Reverberation chamber

Broadband noise was generated in the duct using two Electro-voice 400 W loudspeakers driven by mutually incoherent
white noise signals via two power-amplifiers. The white noise signals were pre-generated, pseudo-random sequences
produced using MATLAB and stored onto 2 channels of a 24 channel Alesis-ADAT hard-disk recorder.

The reverberation room has non-parallel, highly reflective walls and a volume of 131 m>. This ensures that the sound
field in the room, and hence the sound-field incident on the open end of the duct, is reasonably diffuse. Joseph et al. [8]
have shown that this form of excitation creates an equal energy per mode sound-field inside the duct, and ensures that all
propagating modes are mutually incoherent. Incoherent modes is one of the main assumptions in the in-duct to far-field
technique.

5.1.2. In-duct measurements

Fig. 11 is a photograph of the in-duct microphone array. Fifteen 7 mm electret microphones were mounted on a thin
plate of size 50 mm by 400 mm.

The microphones were positioned at the edge of the plate, with the centre of the microphone capsules separated 25 mm
apart. This spacing corresponds to /1/2 at ka=25 (assuming a sound speed of 340ms~!), and is the maximum frequency at
which the array can be used before aliasing occurs. The microphone spacing is chosen to be as close to 4/2 at the highest
frequency of interest, since this spacing gives an optimal beamformer performance [26]. At lower frequencies something
close to this optimal spacing can be maintained by using only, for example, every other microphone in the array. Here,
however, we use all microphones at all frequencies.

The microphone cables passed through small holes in the plate, and were affixed to the underside of the plate so as to
minimise their effect on the sound field in the duct.

The microphone array was located along the bottom of the duct, and as close as possible to the duct wall (Fig. 12).
The first microphone in the array was positioned 1.2 m from the open end of the duct, so as to minimise the effect of
reflections from the open end.

Each microphone was connected to a custom-made signal amplifier. The time series were sampled simultaneously
using a 32 channel SONY DAT recorder at a sampling rate of 48 kHz with 16 bit resolution. The total recording time for each
test was 1 min.



C.R. Lowis et al. / Journal of Sound and Vibration 329 (2010) 3940-3957 3953

The array data were post-processed to create a cross-spectral matrix at each discrete frequency point using the MATLAB
Signal Processing Toolbox functions cpsd and pwelch. A Welch spectral estimation algorithm was used (2048 point FFT,
Hamming window and 50 percent overlap).

To account for the differences in magnitude and phase of the individual array microphones, calibration was performed
by multiplying the complex pressure spectrum of the i th microphone p;(w) by a transfer function, Gjz(w). The transfer
function Gjz(w) is the transfer function between the i th array microphone and a reference microphone averaged over four
loudspeaker positions. This transfer function was measured in an anechoic chamber by placing a B&K type 4185
microphone 5 mm away from the diaphragm of each of the array microphones in turn. White noise was generated with a
loudspeaker, and the transfer function between the two microphones was measured.

The cross-spectral matrix, S,p, in each frequency bin was formed from

2
IG1rI“Spipr G1RSpip G -+ G1rSpipn G
2
GZRSPZPl GTR |G2gl SPsz

Spp = (41)
GNRSPNPl |GnR |25prN
where Sy, = E{(n/T)pi(w)p; (w)} is the pressure cross spectral density between microphone i and microphone j.
Following the theory presented in Section 2.3 the beamformer output corresponding to a beamsteer angle ¢ is
1
Shb(h:@) = 1z W(h,0)Sp W' (h,2) (42)

where w is the vector of weight coefficients, calculated from Eq. (10). Note Eq. (42) is simply a restatement of Eq. (9) in
matrix form, with the measured cross-spectral matrix replacing the predicted pressures of Eq. (9).

5.1.3. Far-field measurements
Measurements of the far-field directivity were made in the anechoic chamber. The size of the chamber, not including
wedges, is 7.33m x 7.33m x 5.50m. The cut-off frequency of the wedges is 80 Hz. The mesh floor of the chamber was

Fig. 12. A photograph of the microphone array positioned in the duct. The microphones themselves lay on an axial line, and are as close as possible to the
duct wall.

Fig. 13. A photograph of the anechoic chamber taken from the main entrance. The far-field microphone array consists of 19 microphones suspended from
the ceiling in a polar arc. The chamber floor has been removed to minimise reflections, except for a small area directly underneath the duct to allow access
for the in-duct measurements. The duct is connected to the reverberation chamber through a baffled panel.
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removed to minimise reflections. Fig. 13 is a photograph of the anechoic chamber taken from the main entrance showing
the duct and the far-field array.

Far-field measurements were made at 19 positions spanning a 90° arc of 3.45 m radius, whose centre was located at the
centre of the duct exit. The far-field microphone array was positioned at the same height as the centre of the duct exit,
defined as an azimuthal angle of 0°. The microphones were positioned at 5° increments from 0° (on axis) to 90° (sideline) as
shown in Fig. 10. The radiated sound field was assumed to be axi-symmetric consistent with the assumption of incoherent
modes. Therefore the radiation is independent of azimuthal angle.

Far-field measurements were made using B&K type 4185 condenser microphones, connected to custom-made
amplifiers. The same acquisition and post-processing hardware was used for both the in-duct and far-field microphones.

Noise-floor measurements were made both in-duct and in the far-field. Signal to noise ratio in the frequency range of
interest, ka < 30, in the far-field was greater than 50 dB on axis falling to approximately 30 dB at 90°. The in-duct signal to
noise ratio was greater than 55 dB.

5.2. Results

In this section the far-field polar directivity, calculated by multiplying the beamformer response by the predicted
transfer function |H(¢>f,a))|2, is compared to the directly measured far-field directivity. Predicted far-field directivities are
obtained using the full transfer function, |H(¢f,w)|2, given by Eq. (16) and based on a flanged duct model.

Far-field directivity predictions are presented in 1/3 octave frequency bands. The predicted far-field squared pressure in
a given third-octave band with centre frequency . is the sum of the narrow band predicted directivities at frequencies
between w; and w,,

min{®y,®max}

PP = > H(p,w)P b0 A (43)

i = o

where Aw; is the analysis frequency bandwidth, and wnayx is the frequency at which the in-duct array is aliased.

In the plots that follow the solid curves correspond to the predicted far-field directivity obtained using |H(q,’)f,a))|2
calculated from Eq. (16). The crosses are the measured far-field directivities. The lower plots in each figure are the
normalised beamformer outputs, |b(¢,,)|?, as a function of beamsteer angle. Solid horizontal lines in the lower plots show
the beamwidth of the in-duct beamformer at 45°.

Fig. 14 shows the results for the 4000 Hz third-octave band, corresponding to ka=14.8 (lower frequency ka=13, upper
frequency ka=16.4). The shape of the predicted directivity is in good agreement with that measured from 10° to
approximately 70°. At high angles the flanged duct model used in the prediction of |H(¢>f,cu)|2 is the most probable cause of
the discrepancies at high angles, and a model more appropriate to the unflanged duct used would improve the predictions.
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Fig. 14. Predicted far-field directivities (top) and normalised beamformer output (bottom) in the 4000 Hz (ka=14.6) third-octave band using an array of
15 microphones spaced 2.5 cm apart. The solid curve in the top plot uses the full transfer function and the crosses denote measured far-field pressures.
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The overall level in the far-field is well-predicted to within 1dB up to 70°. At low angles the technique under-predicts
the far-field levels, this is likely due to a combination of the duct having greater on-axis directivity when fewer modes are
able to propagate, and the low-angle beamformer correction presented in Eq. (22) not performing well at low-frequencies.

The normalised beamformer output in Fig. 14 has a magnitude variation of approximately 2 dB over the range of angles
0’ < ¢ < 75°. This variation is larger than that predicted for the equal energy per mode model in Section 3.2 but not as large
as for the equal amplitude or the volume velocity source model.

Fig. 15 shows the results for the 5000 Hz third-octave band, corresponding to ka=18.4 (lower frequency ka=16.4, upper
frequency ka=20.6). The difference between the predicted and measured far-field levels is now smaller at lower angles.
The measured directivity levels are well predicted to within 2 dB between 10° and 70°.

Fig. 16 shows the results for the 6300 Hz third octave band, corresponding to ka=23.1 (lower frequency ka=20.6, upper
frequency ka=25). This is the highest frequency band investigated, as frequencies above 6800 Hz (ka=25) are aliased by the
in-duct array. The predicted directivity levels are less than 1dB away from the measured directivity from 0° to 70°.
The predicted directivity pattern follows the measured pattern very closely.

The variation in level of the normalised beamformer output in this frequency band is also much smaller, indicating that
the sound field has approximately equal energy per mode.

6. Conclusion

A far-field directivity prediction technique has been proposed that uses an in-duct axial array of microphones to predict
the sound field radiated from the open end of the duct, assuming that the in-duct sound field consists of incoherent modes.
We have shown that the transfer function used to relate the in-duct beamformer output to the corresponding radiated far-
field directivity pattern is very nearly independent of the mode amplitude distribution in the duct for a large range of in-
duct angles less than 80°. A limitation of the technique is that at higher angles the prediction becomes sensitive to the
chosen mode amplitude distribution due to the small number of modes propagating at these high angles.

The transfer function for a no-flow duct has been fully investigated, and a numerical transfer function approach for
aeroengine exhaust ducts has been proposed.

The principle advantage of this technique, over, for example determining the mode amplitudes by modal decomposition
and using these as the input to a radiation model, is the relatively small number of microphones required. An array of
around 15 microphones spaced half a wavelength apart has been shown to be sufficient to predict the far-field directivity
pattern. This performance has been demonstrated using a no-flow laboratory scale rig. In practice, the transfer functions
required can easily be calculated in advance of a measurement campaign. This allows rapid prediction of the far-field
directivity, and enables engineers to quickly asses the effect of build changes on the radiated sound.
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Fig. 15. Predicted far-field directivities (top) and normalised beamformer output (bottom) in the 5000 Hz (ka=18.4) third-octave band using an array of
15 microphones spaced 2.5 cm apart. The solid curve in the top plot uses the full transfer function and the crosses denote measured far-field pressures.
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Fig. 16. Predicted far-field directivities (top) and normalised beamformer output (bottom) in the 6300 Hz (ka=23.15) third-octave band using an array of
15 microphones spaced 2.5 cm apart. The solid curve in the top plot uses the full transfer function and the crosses denote measured far-field pressures.
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Appendix A. The equivalence of an equal energy per mode sound field and isotropic noise

Here we show that an equal energy per mode sound field in a duct in the high-ka limit is equivalent to a semi-isotropic
noise field. Assuming incoherent modes the total squared pressure at the duct wall, |pw(w)|?, can be written as the sum of
the squared modal pressure due to each mode,

Pw(@)? = IPw(Ppmn @) (44)

In the high-ka limit the summation in Eq. (44) can be written as an integral over in-duct angle ¢,

/2
Pw(@)? = /O IPw(h )% dep (45)

where |pw(¢,w)|? is integrated over the continuous mean square pressure per unit angle ¢. By taking the integral from 0 to
7/2 we are assuming sound propagation in one direction only.

From Eq. (18) the squared model amplitude in an equal energy per mode sound field, with M=0, varies as
|A(P )| oc 1/€OS(Ppy)- Therefore |py(¢p,w)|? can be written as

n(¢) (46)

2
IPw(h, )| oc W

where (A) is the mode-normalisation constant averaged over m and n, introduced to correct for the fact that
measurements are made at the duct wall. Joseph et al. show that (4> —2 as ka— co. From Rice [20], n(¢) may be written
as

n(¢) = 2sin¢cos¢ (47)
Combining Egs. (46) and (47) the mean square pressure in a small bandwidth d¢ is
[Pw(¢p, @)% d¢p oc singd d¢p (48)

In Eq. (48) sing d¢ is also proportional to the elementary solid angle since dQ = 2nsing d¢. Thus d|p,,|?/dQ is constant
and an equal energy per mode sound field tends to a diffuse field.
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